
Preprint

Left-Right: A Concurrency Control Technique
with Wait-Free Population Oblivious Reads

Pedro Ramalhete
Cisco Systems

pramalhe@gmail.com

Andreia Correia
Palagate

andreiacraveiroramalhete@gmail.com

Abstract
In this paper, we describe a generic concurrency control technique
with Blocking write operations and Wait-Free Population Obliv-
ious read operations, which we named the Left-Right technique.
It is of particular interest for real-time applications with dedicated
Reader threads, due to its wait-free property that gives strong la-
tency guarantees and, in addition, there is no need for automatic
Garbage Collection.

The Left-Right pattern can be applied to any data structure, al-
lowing concurrent access to it similarly to a Reader-Writer lock, but
in a non-blocking manner for reads. We present several variations
of the Left-Right technique, with different versioning mechanisms
and state machines. In addition, we constructed an optimistic ap-
proach that can reduce synchronization for reads.

We applied this technique to the mutable TreeSet implementa-
tion of the Java library and compared its performance with: Java’s
TreeSet protected with a recently developed Reader-Writer lock,
named ScalableStampedRWLock; and the SnapTreeMap, a re-
laxed tree with hand-over-hand optimistic validation from the edu.-
stanford.ppl.concurrent package. Microbenchmark experiments
show that in a setting with dedicated Reader threads, the Left-
Right technique has an improved throughput of up to a factor of 5
compared with the SnapTreeMap.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent Programming

General Terms Algorithms, Design, Performance

Keywords Wait-Free Population Oblivious, Concurrent data struc-
tures, real-time, Reader-Writer lock

1. Introduction
Concurrent access to data structures in real-time multi-threaded en-
vironments is a challenging problem, mainly because there are few
practical non-blocking data structures and techniques, and most of
them require some kind of automatic Garbage Collection (GC), a
feature that many real-time systems do not have.

[Copyright notice will appear here once ’preprint’ option is removed.]

A common approach when dealing with the need of allowing
concurrent read and write access to a data structure or object, is
to use a Reader-Writer lock. Recent developments have improved
throughput and scalability for read operations [4, 6, 19, 21]. Al-
though flexible, Reader-Writer locks have some drawbacks, one of
them being that Readers — threads doing a read-only operation on
the data structure or object — are blocked by Writers — threads
which try to modify the data structure or object — meaning that,
when a Writer is in the critical section, no Reader will be able to
make progress. The blocking progress condition of Reader-Writer
locks implies that their usage in real-time systems must be care-
fully considered, so as to not affect the real-time properties of the
application.

Another technique is to use a Copy-On-Write (COW) pat-
tern [14]. It consists of copying the entire object or data struc-
ture, applying to the new object the desired modification, and then
atomically swapping the reference to the previous object with the
newly created one using a CompareAndSet (CAS) instruction. This
pattern is a simple approach that can allow Lock-Free writes and
Wait-Free Population Oblivious (WFPO) reads [13]. The disad-
vantage of this approach is that it relies on GC, which hinders
the algorithm from being ported to environments without GC [8],
and cloning the object or data structure can be lengthy, reducing
Writer’s performance.

To overcome these limitations, we designed the Left-Right pat-
tern, which allows multiple Readers to concurrently execute, re-
gardless of whether or not a Writer is simultaneously running, and
does not need a GC. Its main innovation is a new concurrency con-
trol algorithm whose novel state machine gives wait-free guaran-
tees for read operations, unlike previously known algorithms [23]
which are blocking or lock-free.

The Left-Right technique is an easily implementable concur-
rency pattern that wraps any data structure or object, providing
WFPO read operations. The WFPO progress condition gives a
strong guarantee to Reader’s latency, a particularly important char-
acteristic when using data structures in real-time systems. This pat-
tern can be applied to any data structure, but it is particularly in-
teresting when applied to balanced trees [1, 11], which guarantee
worst-case O(ln n) instructions for most of its operations, thus
giving it deterministic latency for reads in a concurrent setting. Al-
though it is blocking for Writers, the fact that it has a small over-
head for Reader synchronization, makes it ideal for usage in write-
few-read-many scenarios.

On Table 1 we show a comparison between the three generic
concurrency techniques.
The SnapTreeMap [3] is a recent concurrent data structure devel-
oped specifically for trees, that allows read and write operations
to perform simultaneously, assuming that no rebalancing is taking
place, otherwise it is possible for the optimistic hand-over-hand val-
idation to fail and block progression. In addition, it takes advantage

Left-Right - extended version 1 2013/11/26



RW COW + Left-Right
Lock CAS

Reads block Reads no no no
Reads block Writes yes no yes∗

Writes block Reads yes no no
Writes block Writes yes no yes
Needs a GC no yes no
Deterministic Read Latency no yes∗∗ yes
Number of instances 1 NThreads 2

Table 1. Comparison table between three generic techniques for
concurrency control. ∗ On the Left-Right pattern, the Writer may
be blocked by older Readers, but once those finish their task, the
Writer will be able to make progress. ∗∗ On the COW+CAS pattern,
the GC can impact the latency.

of a relaxed balance tree, and partially external trees for deletion,
which minimizes the tree’s rebalance frequency.

2. Design Overview
The Left-Right pattern is a concurrency control technique with
two identical objects or data structures, that allows an unlimited
number of Readers to access one instance, while a single Writer
modifies the other instance. The Writer starts by writing on the right
instance (rightInstance) while the Readers read the left instance
(leftInstance), and once the Writer completes the write, the
two instances are switched and new Readers will read from the
rightInstance. The Writer will wait for all the Readers still
running on the leftInstance instance to finish, and then repeat
the write on the leftInstance.

In this paper, the two identical instances will be mutable
TreeSets from the java.util package, based on a Red-Black
tree [5], and will be refered from now on as leftTree and
rightTree. The read operations will run in the leftTree in a non-
exclusive mode, while a single Writer modifies the rightTree, or
vice-versa. Before exiting, the Writer will modify the second data
structure, leaving both of them up-to-date. The synchronization
between Writers is achieved with an exclusive lock that is used to
protect write-access. The write operation has to ensure that Readers
are always running on the data structure that is currently not being
modified. In summary, read operations can run concurrently with
all operations, and will never have to wait for a Writer or for other
Readers.

Figure 1. Components of the Left-Right concurrency control.

The components of the mechanism ensuring a Writer performs
in exclusivity can be seen in Figure 1 and are the following: a
leftRight variable which is toggled by the Writer between LEFT
and RIGHT, that indicates which tree the Readers should go into;
a versionIndex variable, which is also toggled by the Writer
between 0 and 1, functioning like a time tag; and a Reader’s in-
dicator, readIndicator, that allows each Reader to publish the
versionIndex it read.

The readIndicator is a data structure that provides operations
allowing Readers to publish their state, arrive(versionIndex)
and depart(versionIndex), and for the Writer to determine the
presence of Readers, isEmpty(versionIndex). In summary, this
is a state publishing data structure.

A possible implementation for the readIndicator would be
to use two single counters, or two sequentially consistent dis-
tributed counters, one per versionIndex. Furthermore, it is pos-
sible for each counter to be split in two, where each one ag-
gregates arrivals and departures, refered as ingress and egress in
[4]. One implementation is a Distributed Cache Line Counter [18]
whose increment()/decrement() operations can be used as
arrive()/depart(), scales well with the number of threads, and
is wait-free. Another alternative for a readIndicator is SNZI [9],
but this one is lock-free for the arrive()/depart() operations,
which means that using it in the Left-Right algorithm would make
the Readers have a lock-free progress guarantee instead of wait-
free.

Although we didn’t focus in NUMA architectures, a spe-
cific readIndicator can be designed to achieve a minimum
of contention and false sharing [22], along with memory allo-
cation. This solution would need four distributed counters with
an attributed position per core, corresponding to an ingress and
egress per versionIndex. The simplest implementation for the
readIndicator is to have two counters, updated atomically, one
per versionIndex, but such a solution would entail high con-
tention for the Reader threads, incurring performance penalties.

In the presented pseudo-code for the readIndicator shown in
Algorithms [2,3,5], we chose to use a two-dimensional array with
one entry for each versionIndex, named readersVersion[][].
Each Reader thread has two attributed entries,
readersVersion[0][threadIndex] and
readersVersion[1][threadIndex], where threadIndex is
stored in a thread-local variable. Each entry of readersVersion[][]
is placed in its own cache line, using padding and alignment, to
avoid false sharing between Readers. When compared with the
single counter approach, having a larger array to scan may harm
Writer’s performance but will improve Reader’s performance.

2.1 Algorithm Description
2.1.1 Read operations (contains())
1. Load the current value of versionIndex (can be 0 or 1), store

it as X and atomically set Reader’s entry to state READING on
readersVersion[X][].

2. Use the current value of leftRight to decide which TreeSet
should the read operation run in: If leftRight is LEFT then
call leftTree.contains(), and if it is RIGHT then call
rightTree.contains().

3. Atomically set the Reader’s entry to state NOT READING on
readersVersion[X][].

4. Return the value obtained from the contains() function.

2.1.2 Write operations (add()/remove())
Both the add() and remove() operations have the same algorithm,
for simplicity we will refer to these methods as modify().

Left-Right - extended version 2 2013/11/26



Algorithm 1: Algorithm for read operations - contains()
Input: Key
Output: Value

1 localVersionIndex = versionIndex.get();
2 readIndicator.arrive(localVersionIndex);
3 if leftRight.get() == LEFT then
4 Value = leftTree.contains(Key);
5 else
6 Value = rightTree.contains(Key);
7 end
8 readIndicator.depart(localVersionIndex);
9 return Value;

Algorithm 2: An implementation of readIndicator.arrive()
Input: X

1 tlsEntry = ThreadLocal.get();
2 readersVersion[X][tlsEntry.threadIndex].set(READING);

Algorithm 3: An implementation of readIndicator.depart()
Input: X

1 tlsEntry = ThreadLocal.get();
2 readersVersion[X][tlsEntry.threadIndex].set(NOT READING);

1. Acquire the writersMutex to prevent any other thread from
executing a modify().

2. Decide on which tree to do the modify(), based on the cur-
rent value of leftRight: If leftRight is LEFT then call
rightTree.modify(), and if it is RIGHT then call leftTree
.modify().

3. Toggle leftRight using an atomic assignment. This will cause
new read operations to run on the recently modified tree. Notice
that for simplicity, we chose to encode LEFT as having the
negative value of RIGHT.

4. Compute the new versionIndex and scan readersVersion[X][]
yielding execution when an entry is in state READING, where X
is the newly computed versionIndex.

5. Set versionIndex to X using an atomic assignment.

6. Scan readersVersion[X̄][] yielding execution when an en-
try is in state READING, where X̄ is the previous versionIndex.

7. If leftRight is in LEFT then call rightTree.modify(), and
if it is in RIGHT then call leftTree.modify().

8. Unlock the writersMutex.

2.1.3 Progress Conditions
A method is Wait-Free Population Oblivious if it guarantees that
every call completes its execution in a finite number of steps, which
does not depend on the number of active threads.

The read operation has no loops and does an Atomic.get() on
line 1, an Atomic.set() on line 2, an Atomic.get() on line 3, and
finally an Atomic.set() on line 8, as shown in Algorithm 1. This
gives a total of four Atomic operations, which means that the num-
ber of synchronized instructions is finite and constant, regardless
of the number of threads in the system. This ensures that read op-
erations are Wait-Free Population Oblivious.
For the write operation, there is a while() loop of readIndicator’s
isEmpty() which makes the Writer conditionally wait on previ-

Algorithm 4: Algorithm for write operations - modify()
Input: Key

1 writersMutex.lock();
2 localLeftRight = leftRight.get();
3 if localLeftRight == LEFT then
4 rightTree.modify(Key);
5 else
6 leftTree.modify(Key);
7 end
8 leftRight.set(-localLeftRight);
9 prevVersionIndex = versionIndex.get();

10 nextVersionIndex = (prevVersionIndex + 1)%2;
11 while not readIndicator.isEmpty(nextVersionIndex) do
12 yield();
13 end
14 versionIndex.set(nextVersionIndex);
15 while not readIndicator.isEmpty(prevVersionIndex) do
16 yield();
17 end
18 if -localLeftRight == LEFT then
19 rightTree.modify(Key);
20 else
21 leftTree.modify(Key);
22 end
23 writersMutex.unlock();

Algorithm 5: An implementation of readIndicator.isEmpty()
Input: X

1 for i in readersVersion[X].size do
2 if readersVersion[X][i].get() == READING then
3 return false;
4 end
5 end
6 return true;

ous Reader’s progress, because new Readers will have no impact
on Writer progress. This means that if eventually the read opera-
tions make progress, the Writer will make progress too. The Writer
has to acquire a mutually exclusive lock writersMutex, which
means its progress condition is Blocking.

2.2 Synchronization
We will now describe some of the synchronization details, keep-
ing in mind that this algorithm assumes the usage of a memory
model with Sequential Consistency similar to the one in the JVM
or the default on C11/C++1x. This means that Atomic.get()
functions are atomic and executed with an acquire-barrier, and
Atomic.set() are atomic and imply a release-barrier [7].

2.2.1 Versioning Mechanism
A very important detail of the synchronization is in the order of
the access to the variables versionIndex and leftRight. This
sequence is reversed in the write and read operations, thus creating
an hand-shaking procedure between the Writer and Readers. As
can be seen in Algorithm 1, the Reader will load the value of
versionIndex in line 1, and then load the value of leftRight
in line 3, whilst in Algorithm 4, the Writer will first set leftRight
to the new value in line 8, and then set versionIndex to the new
version in line 14.

By using a reversed sequence, the algorithm guarantees for the
Writer, that any Reader that gets the new versionIndex will also
get the new leftRight. Furthermore, if the Reader did not publish

Left-Right - extended version 3 2013/11/26



the versionIndex, it gives a guarantee to the Writer: that the
Reader has not yet read the leftRight, which means that when
it does, it will get the latest up-to-date value of the leftRight
variable.

2.2.2 Correctness
The sequential logic of the Left-Right technique can be represented
with state machine diagrams, where the transitions between states
are atomic and instantaneous, and the time spent on each state is
undetermined. Figure 2 represents the full state machine of the
Writer and the Readers.

Figure 2. Full state machines for the Writer and Readers. Some of
the transitions on the Reader’s diagram are not allowed when the
Writer is in certain states.

Figures 3,4 and 5 represent all the steps a Writer takes to update
both leftInstance and rightInstance while making sure there
is no Reader thread executing on the instance being modified,
which we will from now on refer to as the Writer running in
exclusivity. Figures 4 and 5 correspond respectively to all even
and odd number of the write operations, except for the first write
operation which is presented in figure 3.

For the first write operation, there can not exist a Reader that has
loaded versionIndex as 1, because at the start, the Writer could
not have toggled versionIndex, and its starting value is 0. This
is the reason why all the states at the Reader’s state machine that
depend on the versionIndex to be 1 are transparent, which means
there are no Readers on those states.

We will proceed by explaning figures 4 and 5, keeping in mind
that the first write operation is a special case of 5. As can be ob-
served in both figures, the Writer controls the flow of the Read-
ers by toggling the leftRight and versionIndex variables. The
Writer starts by modifying the instance opposite to where the Read-
ers are currently running. Without any validation, the Writer is sure
there is no Reader on that instance, because the previous write op-
eration has already ensured it in order to be able to finish. It is
interesting to notice that every time a write operation modifies the
second instance, it will guarantee that it performs in exclusivity,
and will also automatically guarantee that the next write operation
will also perform in exclusivity when modifying the same instance,
which will be its first instance.

Another important result is that both end states 4.E and 5.E, are
the starting machine states of each other, where 4.E corresponds
to 5.A, and 5.E to 4.A, this is again because the previous write
operation is leaving the Reader’s state machine in a configuration
that is expected by the next write operation.

Figure 3. For the first Writer, the leftRight is LEFT and
versionIndex is 0.

Left-Right - extended version 4 2013/11/26



After modifying leftInstance or rightInstance, shown in
figures 4.A and 5.A respectively, the next step is to toggle the vari-
able leftRight as can be seen in figures 4.B and 5.B. From this
moment on, there can be Readers executing on the leftInstance
or on the rightInstance.

The next task for the Writer is to guarantee that all Reader
threads will be running on the instance indicated by the recently
modified leftRight. Considering figure 4, the Writer will start by
validating that there is no Reader that published versionIndex 0,
this includes all Readers that are at states P0, L0 and R0. Notice
that the Writer can not distinguish between states P0, L0 or R0, it
only knows that is possible for multiple Reader threads in any of
those states to be executing on the rightInstance, the instance
that is to be modified. In case there is still one Reader running
that published versionIndex 0, the Writer will wait, represented
by state W0. Starting by validating versionIndex 0 guarantees
that the Writer will not starve, because new read operations will
load versionIndex 1, which means that read operations that can
publish versionIndex 0 are finite. This can be easily seen on
figure 4.B where the only possible transition is from state I to state
V1.

After validating that all the Reader threads that published
versionIndex 0 are finished, the Writer can proceed to toggle
versionIndex from 1 to 0. Figure 4.C shows that all new read
operations will load versionIndex 0 and leftRight LEFT. But
there are still old read operations that have loaded versionIndex
1 and may be running on the rightInstance, on state R1.

Now that the versionIndex has been toggled to 0, all new read
operations will load versionIndex 0 which means there is a finite
number of read operations that can publish on the readIndicator
readersVersion[1] this guarantees that the write operation is
not starved. Again, the proceedure will be the same, the Writer will
wait for all Readers that published versionIndex 1 to be finished,
states P1, L1 and R1. Once the readIndicator is empty for
versionIndex 1, it guarantees that R1 is empty. Because there
can be Readers that are on state V1, read operations that loaded
versionIndex 1 but still did not publish on the readIndicator,
are not seen by the Writer and can transition to P1 and L1, which
explains the state machine on figure 4.D. Finally the Writer can
proceed to modify the second instance because both states R0
and R1 are empty, so all read operations are running on the
leftInstance, as shown in figure 4.E.

This sequence of figures demonstrate the validity of the syn-
chronization between Writer and Readers, when a Writer is tog-
gling Readers from RIGHT to LEFT. A similar demonstration can
be done on the opposite direction, which is shown on figure 5.

On the electronic version of this document, Figure 13 displays
an animation of the state machines of the Readers as a Writer
progresses.

2.3 Linearizability
As far as the Writers are concerned, during the modify() oper-
ation described in Algorithm 4, the writersMutex ensures there
is a single Writer at a time and, therefore, any atomic step in the
modify() can be chosen as the linearization point.
For the Readers, it must be the point after which the logical change
by the Writer becomes visible. Any Reader reading leftRight in
line 3 of Algorithm 1 will see the changes done by the Writer if it
reads the leftRight after the Writer has updated it. Otherwise, it
sees the data structure in the previous state.

2.4 Example scenario
We will now show an example scenario with multiple threads
(one Writer and five Readers), with temporal progression going
from top to bottom, starting with the main variables in the states:

Figure 4. State machine of Writer and Readers when the Writer
starts on the rightInstance.

Left-Right - extended version 5 2013/11/26



Figure 5. State machine of Writer and Readers when the Writer
starts on the leftInstance.

Figure 6. A time diagram of the example described with one
Writer and five Readers.

leftRight=LEFT, versionIndex=0, readersVersion[0]=
readersVersion[1] = {0, 0, 0, 0, 0},
Writer1 → Modifies the rightTree
Reader1 → Sees versionIndex 0 and publishes
readersVersion[0]= {1, 0, 0, 0, 0}, does Read on leftTree
Writer1 → Toggles leftRight to RIGHT
Reader2 → Sees versionIndex 0 and publishes
readersVersion[0]= {1, 1, 0, 0, 0}, does Read on rightTree
Writer1 → Yields until readersVersion[1] is {0, 0, 0, 0, 0}
Reader3 → Sees versionIndex 0 and publishes
readersVersion[0]= {1, 1, 1, 0, 0}, does Read on rightTree
Writer1 → Toggles versionIndex to 1
Reader4 → Sees versionIndex 1, readersVersion[0]= {1, 1, 1, 0, 0},
readersVersion[1]= {0, 0, 0, 1, 0}, does Read on rightTree
Write1 → Yields until readersVersion[0] is {0, 0, 0, 0, 0}.
It will wait until Reader1, Reader2, and Reader3 finish, be-
cause it could be possible for Reader3 to be on the leftTree.
Remember that Write1 doesn’t know if Reader3 executed be-
fore or after leftRight was toggled. In the end we will have
readersVersion[1]={0, 0, 0, 1, 0}
Read5 → Sees versionIndex 1 and publishes
readersVersion[1]={0, 0, 0, 1, 1} does Read on rightTree
Write1 → Modifies the contents of the leftTree

A graphical depiction of a time diagram with an example sce-
nario can be seen in Figure 6.

3. Algorithm Variants
With the intent of minimizing the number of synchronization
primitives on the read operations, we have developed multi-
ple variants of the original algorithm. All these variants con-
tinue to follow the same principle, that Readers have to publish
their state, and the Writer is responsible for executing in the in-
stance opposite to the one where the Readers are running. For
the No Version and Reader’s Version variants shown below, the
readIndicator implementation can no longer use counters, in-
stead, each Reader has a dedicated entry where it publishes its
state, using the setState(state) operation, implying a memory
allocation of O(NReaders).

3.1 NV - No Version
In this variant of the algorithm, there is no versionIndex.
Each Reader’s state can have four different values: NOT READING,
READING, LEFT, RIGHT, where valid transitions are shown in Fig-
ure 7.

Left-Right - extended version 6 2013/11/26



Figure 7. Reader’s state machine for the NV algorithm. The tran-
sitions between states are atomic.

Algorithm 6: NV Algorithm for read operations
Input: Key
Output: Value

1 readIndicatorNV.setState(READING);
2 if leftRight.get() == LEFT then
3 readIndicatorNV.setState(LEFT);
4 Value = leftTree.contains(Key);
5 else
6 readIndicatorNV.setState(RIGHT);
7 Value = rightTree.contains(Key);
8 end
9 readIndicatorNV.setState(NOT READING);

10 return Value;

Algorithm 7: NV Algorithm for write operations
Input: Key

1 writersMutex.lock();
2 localLeftRight = leftRight.get();
3 if localLeftRight == LEFT then
4 rightTree.modify(Key);
5 else
6 leftTree.modify(Key);
7 end
8 leftRight.set(-localLeftRight);
9 readIndicatorNV.waitIfReadingOrArgument(localLeftRight);

10 if -localLeftRight == LEFT then
11 rightTree.modify(Key);
12 else
13 leftTree.modify(Key);
14 end
15 writersMutex.unlock();

The main difference from the clasical method is that the Writer
will wait if there are any Readers in state READING or in the state
corresponding to the previous value of the leftRight variable,
either LEFT or RIGHT. We represent this functionality on Algorithm
7 as waitIfReadingOrArgument().

One possible limitation of this algorithm is that, from a theoreti-
cal point of view, it could be possible for a Writer to be stuck indef-
initely waiting for a Reader that finishes its operation and starts a
new operation immediately afterwards, going temporarily into the
READING state, but this issue is unlikely to occur for more than a
few iterations.

3.2 RV - Reader’s Version
In this variant of the algorithm, each Reader has its own version
which it increments and publishes.

As shown in Algorithm 8, the sign of the Reader’s version is
used to represent whether the Reader is in a reading state or not.

The version is set before starting the operation, changing the sign
from negative to positive and incrementing the version by 1. In the
end of the operation, it will change back the sign from positive to
negative. For example, when starting with a Reader’s version of -1,
the next version will be 2, followed by the contains() operation,
and finally a change to version -2.
On Algorithm 9 we show that the Writer has to scan the version of
each Reader (waitUntilIncrementOrNegative()), waiting for
an increment of the version, or for the version to be set to a negative
value, before it can proceed with its own operation.
One theoretical limitation of this approach is that, the variable for
the state of each Reader is continuously incremented and could
eventually overflow. If a 64 bit integer is used for this variable, it
should take many thousands of years for a current modern CPU to
be able to overflow it, thus avoiding this issue in practice.

Algorithm 8: RV Algorithm for read operations
Input: Key
Output: Value

1 tlsEntry = ThreadLocal.get();
2 readIndicatorRV.setState(1-tlsEntry.localVersion);
3 if leftRight.get() == LEFT then
4 Value = leftTree.contains(Key);
5 else
6 Value = rightTree.contains(Key);
7 end
8 readIndicatorRV.setState(tlsEntry.localVersion-1);
9 return Value;

Algorithm 9: RV Algorithm for write operations
Input: Key

1 writersMutex.lock();
2 localLeftRight = leftRight.get();
3 if localLeftRight == LEFT then
4 rightTree.modify(Key);
5 else
6 leftTree.modify(Key);
7 end
8 leftRight.set(-localLeftRight);
9 readIndicatorRV.waitUntilIncrementOrNegative();

10 if -localLeftRight == LEFT then
11 rightTree.modify(Key);
12 else
13 leftTree.modify(Key);
14 end
15 writersMutex.unlock();

3.3 Optimistic Read
We will now show an algorithm that has an optimistic approach to
the Left-Right pattern. The idea is that the Reader assumes that no
Writer is changing the tree where the Reader is executing, which
will be the case if the versionIndex hasn’t changed.

Notice that to implement the Optimistic variant of the algorithm,
it requires a small modification of the algorithm for the Writer. As
shown in bold on algorithm 11, instead of being a two-state variable
(0 or 1), the versionIndex is now an incremental counter. We also
add a release-barrier to prevent code in the read operation from
being re-ordered [2] and placed after reading versionIndex in
line 8.

Mechanisms such as this one are not new [12], and have been
used before for Reader-Writer locks [16] and directly on data struc-
tures [3]. Similarly to these mechanisms, this variant is not as

Left-Right - extended version 7 2013/11/26



Algorithm 10: Optimistic algorithm for read operations
Input: Key
Output: Value

1 localVersionIndex = versionIndex.get();
2 if leftRight.get() == LEFT then
3 Value = leftTree.contains(Key);
4 else
5 Value = rightTree.contains(Key);
6 end
7 releaseBarrier();
8 newLocalVersionIndex = versionIndex.get();
9 if newLocalVersionIndex == localVersionIndex then

10 return Value;
11 else
12 containsKeyAlgorithm1();
13 end

Algorithm 11: Algorithm for write operations when using
optimistic read operations

Input: Key
1 writersMutex.lock();
2 localLeftRight = leftRight.get();
3 if localLeftRight == LEFT then
4 rightTree.modify(Key);
5 else
6 leftTree.modify(Key);
7 end
8 leftRight.set(-localLeftRight);
9 prevVersionIndex = versionIndex.get();

10 nextVersionIndex = prevVersionIndex + 1;
11 readIndicator.waitUntilEmpty(nextVersionIndex % 2);
12 versionIndex.set(nextVersionIndex);
13 readIndicator.waitUntilEmpty(prevVersionIndex % 2);
14 if -localLeftRight == LEFT then
15 rightTree.modify(Key);
16 else
17 leftTree.modify(Key);
18 end
19 writersMutex.unlock();

generic as the previously described variants of the Left-Right tech-
nique, because it allows a Reader and a Writer to run on the same
instance at the same time. In addition, this kind of approach re-
quires automatic GC and the underlying object or data structure
must have atomicity guarantees on their members. For example, on
C11/C++1x, using an optimistic approach for a tree requires the un-
derlying tree to have a node traversal functionality with atomic pro-
prieties, which can be achieved with relaxed atomics [7]. On Java,
there is no need for the nodes of the tree to be volatile because
the JVM guarantees atomicity for references [17], thus allowing
this technique to be used in Java, with several single-threaded data
structure without any modifications.

3.4 Read synchronized operations
Depending on the variant of the algorithm, we get a different finite
number of atomic sequentially consistent operations when doing a
Read:

• Classic Left-Right: 2 get() + 2 set()
• NV - No Version: 1 get() + 3 set()
• RV - Reader’s Version: 1 get() + 2 set()
• Optimistic: minimum 3 get(), maximum 5 get() + 2 set()

Apart from the Optimistic method, the three variants have similarly
little contention and provide equal performance as can be seen on
section 4.

Recently discovered Reader-Writer locks [4] have shown that it
is possible to have good scalability proprieties for read operations
with a number of synchronized calls of one atomic get() and two
atomic set() at best, a performance that the RV variant of the Left-
Right technique will always guarantee.

3.5 Left-Right technique as a Reader-Writer Lock
Although the Left-Right technique is not a Reader-Writer lock, it
can be implemented and used in a way very similar to one, the
main difference being that a Reader-Writer lock protects a block of
code, while the Left-Right protects a specific object without shared
attributes.

Algorithm 12: Algorithm for readerLock()
Input: leftInstance,rightInstance
Output: instance

1 tlsEntry = ThreadLocal.get();
2 tlsEntry.localVersionIndex = versionIndex.get();
3 readIndicator.setState(tlsEntry.localVersionIndex, READING);
4 if leftRight.get() == LEFT then
5 return leftInstance;
6 else
7 return rightInstance;
8 end

Algorithm 13: Algorithm for readerUnlock()
tlsEntry = ThreadLocal.get();
readIndicator.setState(tlsEntry.localVersionIndex, NOT READING);

Algorithms 12 and 13 describe how to transform Algorithm 1 to
obtain a funcionality similar to a readLock() and readUnlock().
A thread-local-storage variable is used to pass the value read for the
versionIndex between the readLock() and the readUnlock(),
but other techniques are possible. Notice that although the names
have the word ”lock” associated, these two algorithms are non-
blocking.
For the write operations, a third method must be implemented, and
it is the one responsible for swapping the two instances. Algorithms
14, 15 and 16 describe how to transform algorithm 4 to provide a
functionality similar to a writeLock() and writeUnlock().
Compared to Reader-Writer locks, the main limitation of the Left-
Right technique using this approach, is that it requires two identical
instances (leftInstance and rightInstance) of the single ob-
ject or data structure that is meant to be accessed in a thread-safe
way.

Algorithm 14: Algorithm for writerLock()
Input: leftInstance,rightInstance
Output: instance

1 writersMutex.lock();
2 if leftRight.get() == LEFT then
3 return rightInstance;
4 else
5 return leftInstance;
6 end

Left-Right - extended version 8 2013/11/26



Algorithm 15: Algorithm for writerToggle()
Input: leftInstance,rightInstance
Output: instance

1 localLeftRight = leftRight.get();
2 leftRight.set(-localLeftRight);
3 prevVersionIndex = versionIndex.get();
4 nextVersionIndex = (prevVersionIndex + 1)%2;
5 readIndicator.waitUntilEmpty(nextVersionIndex);
6 versionIndex.set(nextVersionIndex);
7 readIndicator.waitUntilEmpty(prevVersionIndex);
8 if -localLeftRight == LEFT then
9 return rightInstance;

10 else
11 return leftInstance;
12 end

Algorithm 16: Algorithm for writerUnlock()
writersMutex.unlock();

Algorithm 17: Example of using a Left-Right pattern instead
of a Reader-Writer lock to protect an object

Input: leftInstance,rightInstance
1 instance = readerLock(leftInstance, rightInstance);
2 instance.someReadOnlyOperation();
3 readerUnlock();
4 ...
5 firstInstance = writerLock(leftInstance, rightInstance);
6 firstInstance.someWriteModifyOperation();
7 secondInstance = writterToggle(leftInstance, rightInstance);
8 secondInstance.someWriteModifyOperation();
9 writerUnlock();

4. Performance Evaluation
A set of performance tests were conducted on a dual Opteron 6272
with a total of 32 cores, running Windows 7 with JDK 8 (b100).
We executed 7 individual runs for each of the data structures pre-
sented below, and plotted the median of the operations per milisec-
ond, where the value of operations per milisecond is an average
over a period of 30 seconds, which is presented on Figures 8, 9, 10
and 11.

Each of the seven runs was done twice, once with a TreeSet that
contained one thousand elements and once with one million ele-
ments, totalling 14 runs. On each run, there were always 2 threads
doing solely write operations, where each thread did one remove()
folowed by one add() operation. This was done in a sequential way
over an array with 4 times the number of elements in the set, such
that the remove() is done on the ith-element and the add() for the
ith-element plus numElements, where numElements may be 103

or 106. This way we ensure that the tree is constantly mutating, and
rebalaced often.

• RWLockTreeSet: java.util.TreeSet protected with a Reader-
Writer lock ScalableStampedRWLock [20]. The Scalable-
StampedRWLock is a freely available lock that combines the
C-RW-WP lock described in [4] with the StampedLock pro-
vided in Java JDK8 [16]. The add() and remove() are pro-
tected with exclusiveLock(), and the contains() with the
sharedLock() and, therefore, all operations are blocking.

• LRScalableTreeSet: java.util.TreeSet with the classic Left-
Right technique described in Algorithms 1 and 4.

Figure 8. Total operations per millisecond as function of the num-
ber of Readers when 2 Writers are running on a set of 103 elements

Figure 9. Total operations per millisecond as function of the num-
ber of Readers when 2 Writers are running on a set of 106 elements

• LRScalableTreeSetNV: java.util.TreeSet with the Left-Right
technique (No Version) without using a versionIndex, as
described in Algorithms 6 and 7.

• LRScalableTreeSetRV: java.util.TreeSet with the Left-Right
technique (Reader’s Version) where each Reader updates its
own version that replaces the state, as described in Algorithms
8 and 9.

• LRScalableTreeSetOptimistic: java.util.TreeSet with the op-
timistic approach described in Algorithms 10 and 11.

• SnapTreeMap: edu.stanford.ppl.concurrent.SnapTreeMap
with hand-over-hand optimistic validation and a relaxed bal-
ance tree. All operations of the SnapTreeMap are blocking.

Initially, we tried to compare with an implementation using the
COW pattern, based on an immutable TreeMap [10], but tests with

Left-Right - extended version 9 2013/11/26



Figure 10. Write operations per millisecond as function of the
number of Readers on a set of 103 elements

Figure 11. Write operations per millisecond as function of the
number of Readers on a set of 106 elements

103 elements gave low performance, and tests with 106 elements
were so slow to fill the initial tree as to make the technique imprac-
tical, so we chose not to include this technique in our benchmarks.

As expected, as the number of Reader threads increases, all
four variants of the Left-Right technique scale almost linearly.
Regarding the total number of operations, they have a throughput
of up to five times higher when compared with the SnapTreeMap,
if we consider a TreeSet with 1000 elements. The throughput of
the SnapTreeMap increases slowly with the number of Readers
and it seems to have reached a plateau on Figures 8 and 9. The
RWLockTreeSet also scales well as the number of Reader threads
increases, but the number of write operations decreases signifcantly
as seen on Figures 10 and 11.

Regarding write operations, the algorithm with the highest per-
formance is the SnapTreeMap, which can be explained by: the
SnapTreeMap uses a relaxed balance tree and multiple Writers can

execute at the same time; the Left-Right pattern has to write on two
distinct trees and serializes writes.

Notice that the SnapTreeMap algorithm does O(ln n) atomic
sequentially consistent loads on each read operation, and our
benchmark was done on a machine with x86 architecture, that
does not incur a performance hit when executing these atomic op-
erations, which gives the SnapTreeMap an advantage. The same
benchmark on other architectures may yield better results for the
Left-Right technique because while traversing the TreeSet it does
not execute any atomic sequentially consistent loads, both for the
read and write operations.

4.1 Workload Tests
As mentioned before, the Left-Right technique benefits from ded-
icated Reader threads, but for the sake of comparison, we also
compared the RWLockTreeSet, LRTreeSetOptimistic, and Snap-
TreeMap, using threads that perform both read and write opera-
tions. We experimented with three different workload configura-
tions, 10%, 1% and 0.1% writes, where each percentage value rep-
resents the probability that a write operation will be done, using
a random number generator to determine whether it is a read or
write operation. For example, the plot on Figure 7 with 10% Writes
means that, on average, for every write operation there were nine
read operations. Similarly to the performance tests on the previous
section, each write operation consists of a remove() done on the
ith-element and an add() on the ith-element plus numElements.

On this setting, the SnapTreeMap is the overall winner, bene-
fiting from the fact that Writes can execute simultaneously, while
the Left-Right techniques and the RWLockTreeSet serialize writes.
The only scenario where the LRTreeSetOptimistc performs better
or equal to the SnapTreeMap is for 0.1% writes.

These kind of mixed task tests, where reads are dependent
on a previous write finishing, cause an artificial serialization that
prevents reads from being scalable and from taking advantage
of the Wait-Free progress condition provided by the Left-Right
technique.

4.2 Latency measurements
In order to estimate latency, we used the scenario described in
section 4, with two dedicated Writer threads and two dedicated
Reader threads, and measured the time it took for the contains()
method to complete using System.nanotime(). The test ran for
104 seconds for each data structure, executing more than 1010 func-
tion calls per data structure. We chose to compare the latencies of
the contains() operation for the RWLockTreeSet, LRScalable-
TreeSet and SnapTreeMap, and the results are show in Table 2.

RWLockTreeSet LRScalableTreeSet SnapTreeMap
99% 35 < 1 3
99.9% 43 < 1 6
99.99% 111 2 16

Table 2. Latency measurements in microseconds for the
contains() method on a tree with 103 elements.

Using the RWLockTreeSet as an example, the table can be read
as follows: 99% of the calls to the contains() method take 35 mi-
croseconds or less to complete. Table 2 shows a good latency per-
formance for contains() operations on the LRScalableTreeSet,
where according to our measurements, 99.99% of the operations
take 2 microseconds or less to complete.

5. Advantages/Disadvantages
The Left-Right technique has some disadvantages when compared
with other concurrency techniques:

Left-Right - extended version 10 2013/11/26



• Consumes twice the memory for the data structure itself, but
not the data it contains.

• Has a higher synchronization cost than the Copy-On-Write with
CompareAndSet technique.

• Write operations are not concurrent, and must be performed
twice, once on each tree.

Some of the advantages of using this pattern are:

• This algorithm can be implemented on top of any single-
threaded data structure (not just trees), or even a single object.

• The SnapTreeMap and COW data structures all require a GC,
but at the exception of the Optimistic, none of the variants
of the Left-Right technique need a GC or an extra memory
management system.

• It is Wait-Free Population Oblivious on read operations.
• Unlike other techniques such as RCU [15], that require native

API support, the Left-Right can be used in any system that has
support for languages with a sequentially consistent memory
model (i.e. C++1x, C11, Java, Scala).

• Write operations (add()/remove()) have to wait only for the
read operations that started before the versionIndex was
modified. Moreover, it allows the existence of a dedicated
Writer thread without any impact on the Readers.

6. Discussion
Depending on specific application requirements, there are still im-
provements that can be done on this algorithm. The following para-
graphs describe some of them.

Single Writer Some multi-threaded applications have, by design,
a single dedicated Writer thread and multiple Reader threads. For
those kind of applications, the writersMutex lock()/unlock()
calls can be removed, which will result in a performance improve-
ment.

Asynchronous Writes In case asynchronous writes are an accept-
able approach, a reserved thread can be dedicated to the write op-
erations and a lock-free queue used to delegate add()/remove()
operations from the other threads to this one. This has the disadvan-
tage that a before-happens sequence between read and write oper-
ations is lost, but if the application is insensitive to it, then this
technique will behave as a single Writer.

Bulk Writes It is simple to provide extra functionality to perform
several writes in one shot, through addBulk()/removeBulk()
functions. This improves the performance because it reduces the
overall number of synchronized operations per write.

7. Conclusion
We have shown in this article a generic concurrency technique that
provides Wait-Free Population Oblivious guarantees for the read
operations and does not require automatic Garbage Collection. Its
two main innovations consist of, the usage of two instances of the
underlying object or data structure, which allow a Writer and mul-
tiple Readers to work simultaneously, and the development of a
new concurrency control algorithm that gives the read operations
a Wait-Free progress guarantee. A practical implementation for
a concurrent tree using the Left-Right technique was presented,
that when compared with other concurrent implementations can
underperform when it comes to write operations, but when using
dedicated Reader threads, it provides a scalability for read opera-
tions, that the others can not match.

Due to the recent trend of increased multi-core systems, concur-
rency researchers are, more than ever, being pressured to find prac-
tical mechanisms that allow systems to scale. Until now, most of the
focus was on enabling concurrency through serialization. The Left-
Right technique is a mechanism that by using two instances, re-
duces the contention on a resource, thus increasing parallelization.
We believe that due to its performance, latency, and flexibility of
usage, in practice, this pattern can be used to wrap any single data
structure or object, thus avoiding the employment of other synchro-
nization techniques, such as Reader-Writer locks. Moreover, when
compared with Reader-Writer locks, the Left-Right pattern has the
advantage that it is non-blocking for the read operations, thus pro-
viding strong latency guarantees that no Reader-Writer lock is able
to provide.

Acknowledgments
We wish to thank anonymous reviewer 1 on the Scala2013 confer-
ence for his encouragement and important contribution to the lin-
earization. And a thanks to Davide Cuda for his helpful comments
on the paper’s structure.

References
[1] M. AdelsonVelskii and E. M. Landis. An algorithm for the organiza-

tion of information. Technical report, DTIC Document, 1963.

[2] H. J. Boehm. Can Seqlocks get along with Programming Language
Memory Models? http://safari.ece.cmu.edu/MSPC2012/
slides_posters/boehm-slides.pdf, 2012.

[3] N. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concur-
rent binary search tree. PPoPP 2010, 2010.

[4] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
NUMA-aware reader-writer locks. PPoPP 2013, 2013.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein”. Introduc-
tion to Algorithms. MIT Press and McGraw-Hill, 2001.

[6] A. Correia and P. Ramalhete. Scalable RW Lock with a sin-
gle LongAdder. http://concurrencyfreaks.com/2013/09/
scalable-rw-lock-with-single-longadder.html, 2013.

[7] CPP-ISO-committee”. C++ Memory Order. http://en.
cppreference.com/w/c/atomic/memory_order, 2013.

[8] A. Dragojevic, M. Herlihy, Y. Lev, and M. Moir. On the power
of hardware transactional memory to simplify memory management.
PODC, pages 99–108, 2011.

[9] V. L. Faith Ellen, Yossi Lev and M. Moir. Snzi: Scalable nonzero
indicators. PODC 07, 2007.

[10] F. J. Group. fj.data.TreeMap. http://functionaljava.
googlecode.com/svn/artifacts/3.0/javadoc/fj/data/
TreeMap.html, 2013.

[11] L. J. Guibas and R. Sedgewick. A dichromatic framework for bal-
anced trees. In Foundations of Computer Science, 1978., 19th Annual
Symposium on, pages 8–21. IEEE, 1978.

[12] M. Herlihy. Optimistic concurrency control for abstract data types.
Operating Systems Review, 21(2):33–44, 1987.

[13] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, 1991.

[14] D. Lea. CopyOnWriteArrayList. http://docs.oracle.
com/javase/7/docs/api/java/util/concurrent/
CopyOnWriteArrayList.html, 2013.

[15] P. E. McKenney. What is Read Copy Update. https://www.
kernel.org/doc/Documentation/RCU/whatisRCU.txt, 2013.

[16] OpenJDK. StampedLock. http://cr.openjdk.java.net/

~chegar/8005697/ver.00/javadoc/StampedLock.html, 2013.

[17] Oracle. Atomic Access. http://docs.oracle.com/javase/
tutorial/essential/concurrency/atomic.html, 2013.

Left-Right - extended version 11 2013/11/26

http://safari.ece.cmu.edu/MSPC2012/slides_posters/boehm-slides.pdf
http://safari.ece.cmu.edu/MSPC2012/slides_posters/boehm-slides.pdf
http://concurrencyfreaks.com/2013/09/scalable-rw-lock-with-single-longadder.html
http://concurrencyfreaks.com/2013/09/scalable-rw-lock-with-single-longadder.html
http://en.cppreference.com/w/c/atomic/memory_order
http://en.cppreference.com/w/c/atomic/memory_order
http://functionaljava.googlecode.com/svn/artifacts/3.0/javadoc/fj/data/TreeMap.html
http://functionaljava.googlecode.com/svn/artifacts/3.0/javadoc/fj/data/TreeMap.html
http://functionaljava.googlecode.com/svn/artifacts/3.0/javadoc/fj/data/TreeMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
http://cr.openjdk.java.net/~chegar/8005697/ver.00/javadoc/StampedLock.html
http://cr.openjdk.java.net/~chegar/8005697/ver.00/javadoc/StampedLock.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


[18] P. Ramalhete and A. Correia. Distributed Cache Line
Counter. http://concurrencyfreaks.com/2013/08/
concurrency-pattern-distributed-cache.html, 2013.

[19] P. Ramalhete and A. Correia. Distributed Cache-Line Counter
Scalable RW-Lock. http://concurrencyfreaks.com/2013/09/
distributed-cache-line-counter-scalable.htm, 2013.

[20] P. Ramalhete and A. Correia. ScalableStampedlock. http:
//sourceforge.net/projects/ccfreaks/files/java/src/
com/concurrencyfreaks/locks/ScalableStampedRWLock.
java/download, 2013.

[21] P. Ramalhete and A. Correia. Combining the Stampedlock and Lon-
gAdder to make a new RW-Lock. http://concurrencyfreaks.
com/2013/09/combining-stampedlock-and-longadder-to.
html, 2013.

[22] J. Torrellas, H. Lam, and J. L. Hennessy. False sharing and spatial
locality in multiprocessor caches. Computers, IEEE Transactions on,
43(6):651–663, 1994.

[23] Wikipedia. Concurrency control algorithms. http://en.
wikipedia.org/wiki/Category:Concurrency_control_
algorithms, 2013.

Figure 12. Each plot shows the throughput of the different tech-
niques with 103 or 106 elements for 10%, 1%, and 0.1% Writes.

A. Appendix
Source code in Java and C++11 is available on Sourceforge as part
of the Concurrency Freaks Library

http://sourceforge.net/projects/ccfreaks/
The classes used in this paper can be found under the folder

papers/LeftRight: com.concurrencyfreaks.papers.LeftRight:
RWLockTreeSet.java
LRScalableTreeSet.java
LRScalableTreeSetNV.java
LRScalableTreeSetRV.java
LRScalableTreeSetOptimistic.java
BenchmarkTreeSetFullRebalance.java
BenchmarkTreeSetLatency.java

Figure 13. On the electronic version of this document, this figure
shows an animation of the Writer and Reader’s state machine and
their interaction.

Left-Right - extended version 12 2013/11/26

http://concurrencyfreaks.com/2013/08/concurrency-pattern-distributed-cache.html
http://concurrencyfreaks.com/2013/08/concurrency-pattern-distributed-cache.html
http://concurrencyfreaks.com/2013/09/distributed-cache-line-counter-scalable.htm
http://concurrencyfreaks.com/2013/09/distributed-cache-line-counter-scalable.htm
http://sourceforge.net/projects/ccfreaks/files/java/src/com/concurrencyfreaks/locks/ScalableStampedRWLock.java/download
http://sourceforge.net/projects/ccfreaks/files/java/src/com/concurrencyfreaks/locks/ScalableStampedRWLock.java/download
http://sourceforge.net/projects/ccfreaks/files/java/src/com/concurrencyfreaks/locks/ScalableStampedRWLock.java/download
http://sourceforge.net/projects/ccfreaks/files/java/src/com/concurrencyfreaks/locks/ScalableStampedRWLock.java/download
http://concurrencyfreaks.com/2013/09/combining-stampedlock-and-longadder-to.html
http://concurrencyfreaks.com/2013/09/combining-stampedlock-and-longadder-to.html
http://concurrencyfreaks.com/2013/09/combining-stampedlock-and-longadder-to.html
http://en.wikipedia.org/wiki/Category:Concurrency_control_algorithms
http://en.wikipedia.org/wiki/Category:Concurrency_control_algorithms
http://en.wikipedia.org/wiki/Category:Concurrency_control_algorithms
http://sourceforge.net/projects/ccfreaks/
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/RWLockTreeSet.java
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/LRScalableTreeSet.java
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/LRScalableTreeSetNV.java
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/LRScalableTreeSetRV.java
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/LRScalableTreeSetOptimistic.java
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/BenchmarkTreeSetFullRebalance.java
http://sourceforge.net/projects/ccfreaks/Java/com/concurrencyfreaks/papers/LeftRight/BenchmarkTreeSetLatency.java

	Introduction
	Design Overview
	Algorithm Description
	Read operations (contains())
	Write operations (add()/remove())
	Progress Conditions

	Synchronization
	Versioning Mechanism
	Correctness

	Linearizability
	Example scenario

	Algorithm Variants
	NV - No Version
	RV - Reader's Version
	Optimistic Read
	Read synchronized operations
	Left-Right technique as a Reader-Writer Lock

	Performance Evaluation
	Workload Tests
	Latency measurements

	Advantages/Disadvantages
	Discussion
	Conclusion
	Appendix



